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This Talk

▸ We have been interested in applying formal verification to
information security

▸ We have been led to look at topics such as information theory,
error-correcting codes, probabilistic programs, etc.

▸ We would like to report on a few formal theories that might
be of general interest

▸ The common topic is probability, the work spans several years

▸ Our message is that MathComp has been providing us with
a reliable environment for our experiments
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SSReflect Early Adopters?

▸ Starting in 2004, we were working on formal proof of imperative
programs in Coq using separation logic

▸ We were facing productivity issues that we failed to analyze correctly

▸ By chance, we ran into

and realized that many of our concerns were addressed by
SSReflect



SSReflect/MathComp in Japan

1. We have been trying to promote MathComp in Japan with
lectures

2. These lectures turned into a book in 2018

3. In this book, tactics are given mascots, e.g.:



The SSReflect Zoo According to

move view case

rewrite elim apply
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Fundamental Questions Answered Information Theory

1. What is the ultimate data compression rate1?

2. What is the ultimate encoding rate2 for communication?

Setting:

▸ a source is a probability distribution

▸ a channel is a stochastic matrix
(e.g., the binary symmetric channel [ 1−p p

p 1−p ])

Shannon answered the fundamental questions in 1948:

1. Source coding theorem: One cannot minimize the
compression rate below the entropy

2. Channel coding theorem: One cannot maximize the encoding
rate beyond the capacity of a channel

1compressed bitstring size / original message size
2original message size / encoded message size



Information Theory: Basic Definitions [CT01]

▸ The entropy of a random variable taking n values with
probabilities pi is H = −∑

n−1
i=0 pi log pi

▸ Given two probability mass functions p and q, the divergence

is D(p∣∣q) = ∑x∈X p(x) log p(x)
q(x)

▸ The mutual information between two random variables X , Y
with joint probability mass function p(x , y) and marginals
p(x) and p(y) is I (X ;Y ) = D(p(x , y)∣∣p(x)p(y))

▸ Consider an input X and an output Y . A channel is a
conditional probability distribution pY ∣X (y ∣x). The capacity
is C = maxp(x) I (X ;Y ), p(x) ranging over all the input
distributions

⇒ It looks like a good fit for SSReflect’s iterated
operators [BGBP08]



Finite Probabilities with SSReflect and Coq
(We are in 2009)

Finite probability theory with the iterated operators and the finite sets of
MathComp and the real numbers of Coq:

▸ Distributions over a finite type:

Record fdist (A : finType) := mk {

f :> A ->R+ ;

_ : \sum_(a in A) f a == 1 :> R }.

▸ Probability of an event E given a distribution P:

Definition Pr P (E : {set A}) := \sum_(a in E) P a.

▸ Random variables:

Definition RV U T (P : fdist U) := U -> T.

▸ Distribution of a random variable X: `Pr[ X = a ],
shortcut for Pr P (X @^-1: [set a]) or for
fdistmap X P a



Information Theory with MathComp
Overview

Starting from:

▸ H = −∑n−1
i=0 pi log pi

Definition entropy := - \sum_(a in A) P a * log (P a).

▸ ∑x∈X p(x) log p(x)
q(x)

Definition div := \sum_(a in A) P a * log (P a / Q a).

▸ D(p(x , y)∣∣p(x)p(y))

Definition mutual_info := D(PQ || PQ`1 `x PQ`2).

We completely formalized an introductory textbook to information
theory:
▸ Shannon’s theorems [AH12, AHS14]

▸ Error-correcting codes (Hamming, BCH,
Reed-Solomon, LDPC) [AG15, AGS20b]

▸ Presentations to information theorists
[OHA14, AGS16, AGS18]



Convexity of Information-theoretic Definitions
Statements from [CT01]

Theorem
H(p) is a concave function of p.

Entropy of a binary distribution

Theorem
D(p∣∣q) is convex in the pair (p,q), i.e., if (p1,q1) and (p2,q2) are pairs
of probability mass functions, then

D(λp1 + (1 − λ)p2∣∣λq1 + (1 − λ)q2) ≤ λD(p1∣∣q1) + (1 − λ)D(p2∣∣q2)

for all 0 ≤ λ ≤ 1.

Theorem
Let (X ,Y ) ∼ p(x , y) = p(x)p(y ∣x). The mutual information I (X ;Y ) is a
concave function of p(x) for fixed p(y ∣x) and a convex function of
p(y ∣x) for fixed p(x).



Convex Space

A convex space is a carrier together with a family of binary operators
a◁ p▷ b with 0 ≤ p ≤ 1 such that [Sto49, Fri09]:

▸ a◁ 0▷ b = b

▸ a◁ p▷ a = a (idempotence)

▸ a◁ p▷ b = b◁ 1 − p▷ a (skewed commutativity)

▸ a◁ p▷ (b◁ q▷ b) = (a◁ r ▷ b)◁ s ▷ c (quasi-associativity)
with s = p̄q̄ and r = p

s
(where x̄ = 1 − x)

Examples: real numbers (pa + (1 − p)b), functions to a convex space,
finite distributions, etc.

Allows for generic definitions (U convex space, V ordered convex space):

▸ f ∶ U → U ′ is affine
def
= ∀a,b,0 ≤ p ≤ 1, f (a◁ p▷ b)=f (a)◁ p▷ f (b)

▸ f ∶ U→V is convex
def
= ∀a,b,0 ≤ p ≤ 1, f (a◁p▷b)≤f (a)◁p▷ f (b)

▸ also convex sets and hulls



Convex Space in MathComp

Conveniently defined using Hierarchy-Builder [CST20]:

1. Declare an interface:
HB.mixin Record isConvexSpace (T : Type) := {

_ <| _ |> _ : forall p, T -> T -> T ;

conv1 : forall a b, a <| 1%:pr |> b = a ;

convmm : forall p a, a <| p |> a = a ;

convC : forall p a b, a <| p |> b = b <| p.~%:pr |> a;

convA : forall (p q : prob) (a b c : T),

a <| p |> (b <| q |> c) =

(a <| [r_of p, q] |> b) <| [s_of p, q] |> c }.

2. Declare a structure:
#[short(type=convType)]

HB.structure Definition ConvexSpace := {T of isConvexSpace T }.

3. Build instances: any lmodType (and thus real numbers), the
type “fdist A”, the type “A -> fdist B”, etc.



Application of Convex Spaces to Information Theory

▸ Short statements for convexity properties of information
theoretic definitions:
▸ Lemma entropy_concave :

concave_function (fun P : fdist A => `H P).

▸ Lemma mutual_information_concave W :

concave_function (fun P => mutual_info (P `X W)).

where P `X W is the product distribution λ(x , y).P x ⋅W x y

▸ Lemma mutual_information_convex P :

convex_function

(fun W : A -> fdist B => mutual_info (P `X W)).



Real Cones
A practical tool to reason about convexity

▸ In a convex space, quasi-associativity and skewed commutativity
make for cumbersome symbolic computations

▸ It is actually possible to transpose such computations into real
cones where addition is commutative and associative [VW06]:

HB.mixin Record isQuasiRealCone A := {

addpt : A -> A -> A ;

zero : A ;

addptC : commutative addpt ;

addptA : associative addpt ;

addpt0 : right_id zero addpt ;

scalept : R -> A -> A ;

scale0pt : forall x, scalept 0 x = zero ;

scale1pt : forall x, scalept 1 x = x ;

scaleptDr : forall r, {morph scalept r : x y / addpt x y >-> addpt x y} ;

scaleptA : forall p q x, 0 <= p -> 0 <= q ->

scalept p (scalept q x) = scalept (p * q) x }.

HB.mixin Record isRealCone A of isQuasiRealCone A := {

scaleptDl : forall p q x, 0 <= p -> 0 <= q ->

scalept (p + q) x = addpt (scalept p x) (scalept q x) }.



From Convex Spaces to Real Cones

Consider the following inductive type:

Inductive scaled (A : Type) := Scaled of Rpos & A | Zero.

When A is a convex space:

▸ scaled A can be equipped with a real cone structure (take
addpt (Scaled r x) (Scaled q y) to be (r + q)(x ◁ r

r+q ▷ y))

▸ scaled A can be equipped with a convex space structure (take
x ◁ p▷ y to be addpt (scalept p x) (scalept (1 - p) y)

[VW06])

We can transpose symbolic computations using the fact that Scaled 1

is injective and affine:

▸ a <|p|> b

→ Scaled 1 a <|p|> Scaled 1 b

→ addpt (scalept p (Scaled 1 a)) (scalept (1 - p) (Scaled 1 b))

where addition is associative and commutative

See InfoTheo online or [AGS20a] for details
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Monadic Equational Reasoning

This is an approach to verify programs with effects using
equational reasoning [GH11]
▸ effects are represented by monad interfaces with typically:

▸ an operator (failure, arbitrary choice, probabilistic choice, etc.)
▸ rewriting laws in the form of equations

▸ monad interfaces can inherit from other interfaces and can be
combined

Our starting idea:

▸ build a hierarchy of interfaces using packed classes [GGMR09]

▸ use SSReflect’s rewrite [GT12] to perform equational
reasoning



Example of Monadic Laws
Reminder

Monad laws (two operators: ret(⋅) and ⋅≫= ⋅):

1. ret(a)≫= f = f a (left neutral)

2. m≫= (λx .ret(x)) = m (right neutral)

3. (m≫= f )≫= g = m≫= (λx .f x ≫= g) (associativity)

Arbitrary choice (one operator: ⋅2 ⋅):

1. (m12m2)2m3 = m12 (m22m3) (associativity)

2. (m12m2)≫= k = (m1 ≫= k)2 (m2 ≫= k)
(left-distributivity of bind w.r.t. arbitrary choice)

etc.



Functors and Monads with Hierarchy-Builder

▸ We consider Coq’s Type to be the category Set of sets and
functions [TJ16]

▸ Let us start with functors:
▸ action on objects: F : Type -> Type (carrier)
▸ action on morphisms: actm below

HB.mixin Record isFunctor (F : Type -> Type) := {

actm : forall A B, (A -> B) -> F A -> F B;

functor_id : FunctorLaws.id actm ;

functor_o : FunctorLaws.comp actm }.

▸ Next, monads (ret/bind interface):

HB.factory Record isMonad_ret_bind (F : Type -> Type) := {

ret' : forall A, A -> F A ;

bind : forall A B, F A -> (A -> F B) -> F B ;

bindretf : BindLaws.left_neutral bind ret' ;

bindmret : BindLaws.right_neutral bind ret' ;

bindA : BindLaws.associative bind }.



The Interface of the Probability Monad

Probability monad:

▸ extends the type of Monad

▸ similar interface to convex spaces

▸ with left-distributivity of bind w.r.t. probabilistic choice

HB.mixin Record isMonadProb (M : Type -> Type) of Monad M := {

_ <| _ |> _ : forall p T, M T -> M T -> M T ;

choice0 : forall T a b, a <| 0 |> b = b ;

choiceC : forall T p a b, a <| p |> b = b <| 1 - p |> a ;

choicemm : forall T p, idempotent (_ <| p |> _) ;

choiceA : forall T p q r s a b c,

p = r * s -> 1 - s = (1 - p) * (1 - q) ->

a <| p |> (b <| q |> c) = (a <| r |> b) <| s |> c;

choice_bindDl : forall p a b,

(a <| p |> b) >>= f = (a >>= f) <| p |> (b >>= f) }.



Model of the Probability Monad
The interface do have an implementation

▸ Finite distributions do not form a monad because
fdist : finType -> Type is not an endofunction

▸ Hence finitely-supported distributions with finmap [CS15]:
Record fsdist (A : choiceType) := mk {

f :> {fsfun A -> R with 0} ;

_ : all (fun x => 0 <b f x) (finsupp f) &&

\sum_(a <- finsupp f) f a == 1}.

▸ The required operators (ret(⋅), ⋅≫= ⋅, ⋅ ◁ ⋅ ▷ ⋅):
▸ fsdist1 : forall A : choiceType, A -> {dist A}

def
= [fsfun b in [fset a] => 1 | 0]

▸ fsdistbind : forall A B : choiceType,

{dist A} -> (A -> {dist B}) -> {dist B}
def
= λb.∑a∈supp(d) d(a) × (f (a))(b) over ⋃x∈f (supp(d)) supp(x)

▸ fsdist_conv : forall A : choiceType,

prob -> {dist A} -> {dist A} -> {dist A}

def
= λa.p d1(a) + (1 − p)d2(a) over supp(d1) ∪ supp(d2)



The Start of a Hierarchy of Effects

probMonad

convex spaces

real cones

quasi-real cones

monad

functor

Solid arrow: inherits
Dotted arrow: uses



Probabilistic Program Verification using Rewriting

A biased coin with probability p:
Definition bcoin {M : probMonad} p : M bool := Ret T <| p |> Ret F.

Simple statement:
Definition two_coins p q : M (bool * bool) :=

do a <- bcoin p; do b <- bcoin q; Ret (a, b).

Lemma two_coinsE p q : two_coins p q = two_coins q p.

Proof:
rewrite /two_coins /bcoin.

(Ret T <|p|> Ret F) >>=

(fun a => (Ret T <|q|> Ret F) >>= (fun b => Ret (a, b)))

rewrite ![in LHS](choice_bindDl,bindretf).

(* choice_bindDl -> probability monad law *)

(* bindretf = ret x >= f = f x -> monad law *)

(Ret (T, T) <|q|> Ret (T, F)) <|p|> (Ret (F, T) <|q|> Ret (F, F))

rewrite -choiceACA.

(* interchange <|p|> <|q|> -> real cones *)

(Ret (T, T) <|p|> Ret (T, F)) <|q|> (Ret (F, T) <|p|> Ret (F, F))

...



Examples Formalized with The Monae Library

▸ tree relabeling [GH11], Spark aggregation [Mu19b], Monty-Hall
problem [GH11, Gib12]

▸ n-queens [GH11], completed by [Mu19a]
(we fixed an earlier version of the latter)

▸ quicksort [MC20]
(we completed a pre-existing formalization in Agda)

▸ Jaskelioff’s theory of modular monad transformers [Jas09]
(we actually proposed a fix for this theory)

Experiments documented in the following papers
[ANS19, AN21, AGNS21, SA22]



Combination of Monad Interfaces Can be Difficult

It was observed in [ASCG16] that [GH11] contains a mistake3:

▸ right-distributivity of bind over probabilistic choice
m≫= λx .(k x ◁ p▷ k ′ x) = (m≫= k)◁ p▷ (m≫= k ′)
combined with

▸ distributivity of probabilistic choice over arbitrary choice
m◁ p▷ (a2b) = (m◁ p▷ a)2 (m◁ p▷ b)

result in a degenerated theory:

▸ distributivity of arbitrary choice over probabilistic choice
m2 (a◁ p▷ b) = (m2 a)◁ p▷ (m2b)

▸ which implies a◁ p▷ b = a◁ q▷ b for all p,q ∈]0; 1[
[KP17, Thm A.3]

⇒ It is important to provide implementations for interfaces

3We checked with Monae that [GH11] was not relying on this mistake.



Hierarchy of Effects (cont’d)

Geometrically
convex

monad [Che17]

altCIMonad

probDrMonad

probMonad

convex spaces

real cones

quasi-real cones

altMonad

monad

functor

The probDrMonad adds:

▸ m≫= λx .(k x ◁ p▷ k ′ x) = (m≫= k)◁ p▷ (m≫= k ′)
The geometrically convex monad adds:

▸ m◁ p▷ (a2b) = (m◁ p▷ a)2 (m◁ p▷ b)



Model of the Geometrically Convex Monad
What is a computation in this monad?
▸ Gibbons observes that it should be a convex-closed sets of

probability distributions [Gib12]
▸ Cheung provides a construction using adjunctions between

categories [Che17]

We formalized Cheung’s construction [AGNS21]:

Type

CT
choiceType

CC
⊥

FC

UC

convType

CV
⊥

F0

U0

semiCompSemi-

-LattConvType

CS
⊥

F1

U1

This relies on an extension of Monae with concrete categories (to
go beyond Set)

Ask Takafumi here in this room! →
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Statistical Model as Probabilistic Programs

▸ Example: guessing whether or not today’s a weekday by
looking at the number of buses passing by [Sta20]

normalize (

let x = sample (bernoulli (2 / 7)) in

let r = if x then 3 else 10 in

let _ = score (r ^ 4 / 4! * e ^ (- r)) in

return x)

▸ Intuitive explanation:
▸ sample takes a probability measure
▸ normalize returns a probability measure
▸ score (f x) means that we observe x from the distribution

corresponding to the density f
▸ here, observe 4 from the Poisson distribution

(of density rk

k!
e−r )

▸ Problem: existing formalizations in Coq use axioms
[HcS19, ZA22]



Formalization of Kernels using MathComp-Analysis

Staton proposed a semantics for programs with sampling, scoring,
and normalization using s-finite kernels [Sta17]

Definition:
▸ A kernel X ↝ Y is a function k ∶ X → ΣY → [0,∞] such that

1. for all x , k x is a measure
2. for all measurable set U, x ↦ k x U is measurable

Reminder: measure theory in MathComp-Analysis [AC22]
measurable spaces type measurableType

measure type {measure set T -> \bar R}

measurable functions predicate measurable_fun

Formal definition of kernel (notation R.-ker X ~> Y):

HB.mixin Record isKernel

X Y R (k : X -> {measure set Y -> \bar R}) :=

{ measurable_kernel :

forall U, measurable U -> measurable_fun setT (fun x => k x U) }.



S-Finite and Finite Kernels
A circular-looking definition

Definition:

▸ A kernel k ∶ X ↝ Y is finite when ∃r s.t. ∀x , k x Y < r
(uniformly upper bounded)

▸ A kernel k is s-finite when there exists a sequence of finite
kernels s such that k = ∑∞i=0 si

Circularity?

▸ s-finite kernels are more general than finite kernels
(so they should be defined first)

▸ finite kernels are needed to define s-finite kernels. . .



Wanted: Hierarchy of Kernels
To implement Staton’s semantics of probabilistic programs

Probability kernel X
prob

Y

Subprobability kernel X
subprob

Y

Finite kernel X
fin

Y

S-finite kernel X
s-fin

Y

Kernel X ↝ Y



S-Finite and Finite Kernels
A recipe using Hierarchy-Builder

1. Interface for s-finite kernels using a predicate for finite kernels:

HB.mixin Record Kernel_isSFinite_subdef

X Y R (k : X -> {measure set Y -> \bar R}) := {

sfinite_subdef : exists2 s : (R.-ker X ~> Y)^nat,

forall n, measure_fam_uub (s n) &

forall x U, measurable U -> k x U = kseries s x U }.

Notation: R.-sfker X ~> Y, inherits from R.-ker X ~> Y

2. Interface for finite kernels:

HB.mixin Record SFiniteKernel_isFinite

X Y R (k : X -> {measure set Y -> \bar R}) :=

{ measure_uub : measure_fam_uub k }.

Notation: R.-fker X ~> Y, inherits from R.-sfker X ~> X

3. Definitive interface for s-finite kernels:

HB.factory Record Kernel_isSFinite

X Y R (k : X -> {measure set Y -> \bar R})

of isKernel _ _ _ _ _ k := {

sfinite : exists s : (R.-fker X ~> Y)^nat,

forall x U, measurable U -> k x U = kseries s x U }.



Composition of S-finite Kernels

The main property of s-finite kernels is that they are stable by
composition (this provides a semantics for let x := e in e')

▸ Given l ∶ X ↝ Y and k ∶ X ×Y ↝ Z ,
the composition l ; k is defined by

λx U.∫
y
k (x , y)U(d l x)

▸ Reminder: integral theory in MathComp-Analysis [AC22]

∫x∈A f (x)(dµ) \int[mu]_(x in A) f x

▸ Formal definition of composition:

Definition kcomp l k x U := \int[l x]_y k (x, y) U.

▸ Staton proved that the composition of s-finite kernels is a s-finite
kernel [Sta17]. He skipped the proof that it is a kernel. It is not
trivial but it can be achieved it by adapting existing lemmas from
Fubini’s theorem available in MathComp-Analysis.



Semantics of Sampling using S-finite Kernels
For illustration

What is the semantics of sample (bernoulli (2 / 7))?

1. Build the measurable space of probability measures
pprobability Y R

▸ generated from the set of probability measures µ such that
µ(U) < r for all measurable sets U and 0 ≤ r ≤ 1

▸ The type X -> pprobability Y R is essentially
X -> {measure set Y -> \bar R}

2. P : X -> pprobability Y R is a kernel

▸ for any measurable set U, fun x => P x U is measurable

3. P : X -> pprobability Y R is a probability kernel

▸ because for all x, P x setT = 1
▸ it is therefore automatically a s-finite kernel

4. For our example, take for P the (constant) Bernoulli probability
measure (built out of Dirac measures)



Staton’s Buses in Coq

normalize (

let x = sample (bernoulli (2 / 7)) in

let r = if x then 3 else 10 in

let _ = score (r ^ 4 / 4! * e ^ (- r)) in

return x)

⇓

Definition kstaton_bus : R.-sfker T ~> mbool :=

letin (sample (bernoulli p27))

(letin

(letin (ite var2of2 (ret k3) (ret k10))

(score (measurable_fun_comp mh var3of3)))

(ret var2of3)).

(* NB: density function parameterized,

"De Bruijn indices" for variables *)

Definition staton_bus := normalize kstaton_bus.



Symbolic Evaluation of Statistical Models

We can evaluate a model to a distribution:

Lemma staton_busE P (t : R) U :

let N := ((2 / 7) * poisson4 3 + (5 / 7) * poisson4 10)%R in

staton_bus mpoisson4 P t U =

((2 / 7)%:E * (poisson4 3)%:E * \d_true U +

(5 / 7)%:E * (poisson4 10)%:E * \d_false U) * N^-1%:E.

(Proof by rewriting)
In mathematical notation:

2
7
34

4! e
−3

N
δ1 +

5
7
104

4! e
−10

N
δ0 = 0.780369δ1 + 0.219631δ0

So it is more likely that we are in the weekend



Commutativity Property of Probabilistic Programs
The main motivation for Staton’s work

Is the following program transformation correct?
let x := t in

let y := u in

ret (x, y)

↔ let y := u in

let x := t in

ret (x, y)

This is a consequence of Tonelli-Fubini’s theorem for s-finite
measures:

(* f measurable non-negative, m1, m2 s-finite *)

Lemma sfinite_fubini :

\int[m1]_x \int[m2]_y f (x, y) =

\int[m2]_y \int[m1]_x f (x, y).

(This is a consequence of Tonelli-Fubini’s theorem for σ-finite

measures—the one you find in a standard undergraduate textbook on

integration).



Conclusion
The MathComp project has been providing us with

▸ good tactic support
(e.g., rewrite in monadic equational reasoning)

▸ a rich, stable, flexible framework (we could combine MathComp
and the Coq standard library)

▸ libraries (finmap, MathComp-Analysis)

▸ methodologies (packed classes, naming conventions)

▸ tools (Hierarchy-Builder)

which let us

▸ develop original formalizations (InfoTheo, Monae)

▸ develop libraries for (probabilistic) program verification

▸ fix existing pencil-and-paper proofs

▸ retrofit results to MathComp (in particular
MathComp-Analysis)
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