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Flajolet-Sedgwick
Analytic combinatorics

Figure I.2.
The prehistory of Catalan
numbers.

20 I. COMBINATORIAL STRUCTURES AND ORDINARY GENERATING FUNCTIONS

1. On September 4, 1751, Euler writes to his friend Goldbach [196]:
Ich bin neulich auf eine Betrachtung gefallen,
welche mir nicht wenig merkẅurdig vorkam.
Dieselbe betrifft, auf wie vielerley Arten ein
gegebenes polygonum durch Diagonallinien in
triangula zerchnitten werden könne.

I have recently encountered a question, which
appears to me rather noteworthy. It concerns
the number of ways in which a given [convex]
polygon can be decomposed into triangles by
diagonal lines.

Euler then describes the problem (for ann–gon, i.e.,(n− 2) triangles) and concludes:
Setze ich nun die Anzahl dieser verschiedenen
Arten = x [. . . ]. Hieraus habe ich nun den
Schluss gemacht, dass generaliter sey

x = 2.6.10.14....(4n− 10)

2.3.4.5....(n− 1)

[. . . ] Ueber die Progression der Zahlen
1,2, 5,14,42, 132, etc. habe ich auch diese
Eigenschaft angemerket, dass1+ 2a+ 5a2 +
14a3+ 42a4+ 132a5+ etc. = 1−2a−√1−4a

2aa .

Let me now denote byx this number of ways
[. . . ]. I have then reached the conclusion that
in all generality

x = 2.6.10.14....(4n− 10)

2.3.4.5....(n− 1)

[. . . ] Regarding the progression of the numbers
1,2, 5,14,42, 132, and so on, I have also ob-
served the following property: 1+ 2a+ 5a2+
14a3 + 42a4 + 132a5 + etc. = 1−2a−√1−4a

2aa .

Thus, as early as 1751, Euler knew the solution as well as the associatedgenerating function.
From his writing, it is however unclear whether he had found complete proofs.

2. In the course of the 1750s, Euler communicated the problem, together withinitial elements
of the counting sequence, to Segner, who writes in his publication [146] dated 1758: “The
great Euler has benevolently communicated these numbers to me; the wayin which he found
them, and the law of their progression having remained hidden to me” [“quos numeros mecum
beneuolus communicauit summus Eulerus; modo, quo eos reperit, atque progressionis ordine,
celatis”]. Segner develops a recurrence approach to Catalan numbers. By aroot decomposition
analogous to ours, on p. 35, he proves (in our notation, for decompositions inton triangles)

(4) Tn =
n−1∑

k=0

TkTn−1−k, T0 = 1,

a recurrence by which the Catalan numbers can be computed to any desired order. (Segner’s
work was to be reviewed in [197], anonymously, but most probably, by Euler.)

3. During the 1830s, Liouville circulated the problem and wrote to Lamé, who answered the
next day(!) with a proof [399] based on recurrences similar to (4) ofthe explicit expression:

(5) Tn = 1

n+ 1

(
2n

n

)
.

Interestingly enough, Laḿe’s three-page note [399] appeared in the 1838 issue of theJour-
nal de math́ematiques pures et appliquées(“Journal de Liouville”), immediately followed by
a longer study by Catalan [106], who also observed that theTn intervene in the number of
ways of multiplyingn numbers (this book, §I. 5.3, p. 73). Catalan would then return to these
problems [107, 108], and the numbers 1, 1, 2, 5, 14, 42, . . . eventually became known as the
Catalan numbers. In [107], Catalan finallyprovesthe validity of Euler’s generating function:

(6) T(z) :=
∑

n
Tnzn = 1−√1− 4z

2z
.

4. Nowadays,symbolic methodsdirectly yield the generating function (6), from which both the
recurrence (4) and the explicit form (5) follow easily; see pp. 6 and 35.

Figure I.2. The prehistory of Catalan numbers.
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Catalan numbers

Polygon triangulations

1, 1, 2, 5, 14, 42, 132 . . .

T0 = 1,

Tn =
n−1∑
k=0

TkTn−1−k

Tn =
1

n + 1

(
2n

2

)
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catalan

Euler, Segner, Liouville, Catalan, . . .

T (z) :=
∑
n

Tnz
n = 1+ z + 2z2 + 5z3 + 14z4 + 42z5 + 132z6 + . . .

=
1−

√
1− 4z

2z
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Enumerative Combinatorics
A short introduction from an algorithmic point of view

Counting and generating combinatorial objects
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Example of �nite sets...

n-bits sequences:

0 1

00 01 10 11

000 001 010 011 100 101 110 111

0000 0001 0010 0011 0100 0101 0110 0111

1000 1001 1010 1011 1100 1101 1110 1111

Cardinality (number of elements): https://oeis.org/A000079

2n : 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096 . . .

https://oeis.org/A000079
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Permutation of [1, 2, . . . , n]

1

12 21

123 132 213 231 312 321

1234 1243 1324 1342 1423 1432 2134 2143 2314 2341 2413 2431

3124 3142 3214 3241 3412 3421 4123 4132 4213 4231 4312 4321

Cardinality (number of elements): https://oeis.org/A000142

n! : 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800 . . .

https://oeis.org/A000142
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Binary trees with n nodes
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Binary trees with n nodes

Cardinality (number of elements): https://oeis.org/A000142

Cat(n) : 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012 . . .

https://oeis.org/A000142
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Unlabelled graphs with n vertices

Unlabelled = upto isomorphism

Cardinality (number of elements): https://oeis.org/A000088

Gr(n) : 1, 2, 4, 11, 34, 156, 1044, 12346, 274668, 12005168, 1018997864 . . .

https://oeis.org/A000088
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Unlabelled graphs with 5 vertices:
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More �real life examples�

XML document with n balises

n character program in C

possible execution pathes in a code
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Combinatorial Generation

Question

Find e�cient algorithms

count, �nd the list, iterate

fair random sampling

Application:

search of a solution using brute force or randomization

analysis of algorithms, complexity computation

tests, fuzzing

biology, chemistry, statistical physics
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Standard references

Frank Ruskey, Combinatorial Generation doi:10.1.1.93.5967,
2003, unpublished

A. Nijenhuis and H.S. Wilf, Combinatorial algorithms, 2nd ed.,
Academic Press, 1978
http://www.math.upenn.edu/~wilf/website/CombinatorialAlgorithms.pdf

P. Flajolet and R. Sedgewick, Analytic Combinatorics, Cambridge
University Press, 2009. Electronic version
http://algo.inria.fr/flajolet/Publications/AnaCombi/book.pdf

The On-Line Encyclopedia of Integer Sequences http://oeis.org

A list of combinatorial software:
https://www.mat.univie.ac.at/~slc/divers/software.html

Combinatorial Generation Combinatorial Generation
Combinatorial Generatio ombinatorial Generation
Combinatorial Generati mbinatorial Generation
Combinatorial Generat binatorial Generation
Combinatorial Genera inatorial Generation
Combinatorial Gener natorial Generation
Combinatorial Gene atorial Generation
Combinatorial Gen torial Generation
Combinatorial Ge orial Generation
Combinatorial G rial Generation
Combinatorial ial Generation
Combinatoria al Generation
Combinatori l Generation
Combinator Generation
Combinato eneration
Combinat neration
Combina eration
Combin ration
Combi ation
Comb tion
Com ion
Co on
C n

October 1, 2003

Combinatorial Generation
Working Version (1j-CSC 425/520)

no comments printed; pseudo-code version

Frank Ruskey

Department of Computer Science
University of Victoria

Victoria, B.C. V8W 3P6
CANADA

fruskey@csr.csc.uvic.ca

C n
Co on
Com ion
Comb tion
Combi ation
Combin ration
Combina eration
Combinat neration
Combinato eneration
Combinator Generation
Combinatori l Generation
Combinatoria al Generation
Combinatorial ial Generation
Combinatorial G rial Generation
Combinatorial Ge orial Generation
Combinatorial Gen torial Generation
Combinatorial Gene atorial Generation
Combinatorial Gener natorial Generation
Combinatorial Genera inatorial Generation
Combinatorial Generat binatorial Generation
Combinatorial Generati mbinatorial Generation
Combinatorial Generatio ombinatorial Generation
Combinatorial Generation Combinatorial Generation

doi:10.1.1.93.5967
http://www.math.upenn.edu/~wilf/website/CombinatorialAlgorithms.pdf
http://algo.inria.fr/flajolet/Publications/AnaCombi/book.pdf
http://oeis.org
https://www.mat.univie.ac.at/~slc/divers/software.html
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Generic algorithms

Question

How to avoid ad hoc solution for each and every type
of combinatorial objects ?

basic components =⇒ singleton, union, cartesian product,
set and multiset, cycle. . .

combine the basic components =⇒ combinatorial class,
description grammar

Today: Only counting !
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Notion of combinatorial class

De�nition (Combinatorial class)

A combinatorial class, is a �nite or denumerable set C whose

elements e have a size (also called degree) noted |e|, satisfying the

following conditions:

the size of an element is a non-negative integer

the number of elements of any given size is �nite

card{∈ C | |e| = n} < ∞

Example:

Binary trees where size is the number of nodes
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Generating series

De�nition

The (ordinary) generating series of a sequence (an)n is the formal

power series

A(z) :=
∞∑
n=0

anz
n .

The generating series of a combinatorial class A is the generating

series of the numbers an := card(An). Equivalently,

A(z) =
∑
α∈A

z |α| .
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The graded disjoint union

If C = A ⊔ B, the elements of A and B keep their size in the
graded disjoint union:

Cn := An ⊔ Bn

Therefore
card Cn = cardAn + cardBn

Note

The generating series of a disjoint union is the sum of generating
series:

C (z) = A(z) + B(z) .
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The graded Cartesian product

Idea: sizes (cost, number of memory locations, . . . ) are added:

|(a, b)|A×B := |a|A + |b|B
If C = A× B then Cn =

⊔
i+j=n

Ai × Bj

Cardinality:

card Cn =
∑
i+j=n

cardAi · cardBj

[zn](A(z) · B(z)) =
∑
i+j=n

[z i ]A(z) · [X j ]B(z)

Note

The generating series of a cartesian product is the product of the
generating series:

C (z) = A(z) · B(z) .
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A dictionary : Comb. Classes / Gen. Fun. (unlabeled case)

Neutral (|ϵ| = 0) E = {ϵ} E (z) = 1
Atom (| • | = 1) Z = {•} Z (z) = z
Disjoint Union A = B ⊔ C A(z) = B(z) + C (z)
Cartesian product A = B × C A(z) = B(z) · C (z)

Sequence A = Seq(B) A(z) =
1

1− B(z)

Powerset A = PSet(B) A(z) = exp

 ∞∑
k=1

(−1)k−1

k
B(zk)


Multiset A = MSet(B) A(z) = exp

 ∞∑
k=1

1

k
B(zk)


Cycle A = Cycle(B) A(z) =

∞∑
k=1

ϕ(k)

k
log

1

1− B(zk)
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Example : Binary trees

Size = number of internal nodes

BinTree = {ϵ} ⊔ BinTree×Z × BinTree

T (z) = 1+ T (z) · z · T (z) = 1+ z · T (z)2

Solution by radicals (quadratic equation):

T (z) =
1−

√
1− 4z

2z
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Summary: Why generating series ?

Note (The symbolic method)

describe combinatorial objects by grammars using basic
elementary constructions

translate these grammar to systems of functional equations on
generating series

�solve� these systems by algebraic manipulation allows to
extract the coe�cients

Going further: asymptotic analysis thanks to complex analysis
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What are power series ?

K : a ring.

De�nition

The ring K [[X ]] of formal power series is the set of sequences (an)n,
written as

∑
n anX

n together with the natural sum, and product.

More structures: derivation, integration, substitution. . .

Problem: series are in�nite objects

Impossible to store one in a �nite data structure

Equality cannot be decided (MathComp requirement)
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Two possible implementations

Note

truncated formal power series : For a �xed n, we only know
coe�cients upto xn

in�nite formal power series : we store all the coe�cient but we
need in�nite objects and classical axioms

Remark: this is also a problem in Computer Algebra Systems
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Power series in Sagemath

sage: F.<z> = LazyPowerSeriesRing(QQ) # coeff. computed on demand

sage: T = 1/(1-z); T

Uninitialized lazy power series

sage: T[3]

1

sage: T

1 + z + z^2 + z^3 + O(x^4)

sage: T[5]

1

sage: T

1 + z + z^2 + z^3 + z^4 + z^5 + O(x^6)

sage: FF.<x> = PowerSeriesRing(QQ) # truncated (to X^20 by default)

sage: T = 1/(1-x)

sage: T

1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 +

x^10 + x^11 + x^12 + x^13 + x^14 + x^15 + x^16 + x^17 +

x^18 + x^19 + O(x^20)

sage: T[40]

IndexError: coefficient not known
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Truncated formal power series

De�nition

The ring K [[X ]]n of n th-Truncated power series is the quotient

ring K [X ]/⟨xn⟩.

Major rewrite of the code from Cyril Cohen and Boris Djalal to
adapt it to any ring (e.g. Z) � not just a �eld.

Truncation = cutting a list (instead of taking the remainder in the
Euclidian division).
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Truncated formal power series

De�nition:

Variable R : ringType.

Variable n : nat.

Record truncfps := MkTfps { tfps : {poly R}; _ : size tfps <= n.+1 }.

Extracting coe�cients:

Implicit Types (p q r s : {poly R}) (f g : {tfps R n}).

Lemma coef_tfps f i : f`_i = if i <= n then f`_i else 0.

Lemma tfpsP f g : (forall i, i <= n -> f`_i = g`_i) <-> (f = g).
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Truncated formal power series (2)

Polynomial truncation

Fact trXn_subproof p : size (Poly (take n.+1 p)) <= n.+1.

Definition trXn p := MkTfps (trXn_subproof p).

gives the ring structure:

Lemma trXn_mul p q :

trXn n (tfps (trXn n p) * tfps (trXn n q)) = trXn n (p * q).

Fact one_tfps_proof : size (1 : {poly R}) <= n.+1.

Definition one_tfps : {tfps R n} := Tfps_of one_tfps_proof.

Definition mul_tfps f g := trXn n (tfps f * tfps g).
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More structure on formal power series

Example: if R is a unitary ring then R[[X ]]n is too.

Variable R : unitRingType.

Definition unit_tfps : pred {tfps R n} := fun f => f`_0 \in GRing.unit.

De�nition by �xed point:

Fixpoint inv_tfps_rec f bound m :=

if bound is b.+1 then

if (m <= b)%N then inv_tfps_rec f b m

else -f`_0%N^-1 * (\sum_(i < m) f`_i.+1 * (inv_tfps_rec f b (m - i.+1)%N))

else f`_0%N^-1.

Definition inv_tfps f : {tfps R n} :=

if unit_tfps f then [tfps i <= n => inv_tfps_rec f i i] else f.

Lemma mul_tfpsVr : {in unit_tfps, right_inverse 1 inv_tfps *%R}.

Lemma mul_tfpsrV : {in unit_tfps, left_inverse 1 inv_tfps *%R}.
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More structure on formal power series

Example: formal derivative

Definition deriv_tfps f := [tfps j <= n.-1 => f`_j.+1 *+ j.+1].

deriv_tfps

: {tfps R n} -> {tfps R n.-1}

Classical formulas

Fact derivD_tfps f g : (f + g)^`() = f^`()%tfps + g^`()%tfps.

Theorem derivM_tfps n (f g : {tfps R n}) :

(f * g)^`() = f^`()%tfps * (trXnt n.-1 g) + (trXnt n.-1 f) * g^`()%tfps.

All the formula for analysis:

primitive

exponential, logarithm

composition F (G (X )) (needs G0 = 0 no convergence).
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In�nite power series

Using the classical axiom from Mathcomp's analysis.

Problem

One can construct them from scratch, but one has to redo all the
work of polynomials.

Question

Is there a way to get in�nite power series from truncated one ?

Limit of K [[X ]]n as n tends to in�nity ? In what sense ?
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Categorical Limit

Suitable notion: (Categorical) Inverse Limit.

Warning (Inverse limit ̸= topological limit)

Algebraic notion of limit coming from category theory ̸= notion of
convergence of the series F (X ) for a given value of X .

In particular:

There is no topology involved;

We don't care about the radius of convergence of a series:
The series

∑
n n!z

n is a perfectly valid power series, though its
convergence radius is 0.

The moto here is: all coe�cients must be computed using
only �nitely many algebraic operation.
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Inverse (projective) systems

I : ordered directed set � only need nonnegative integers.

In an algebraic category (e.g. ring with ring morphisms)

De�nition

An inverse system is given by

Objects: a sequence (Ai )i∈I

Bonding morphisms: for each i ≤ j a morphism ϕi ,j : Aj 7→ Ai

(beware the inverse direction).

such that for all i ∈ I , the morphism ϕi ,i is the identity and

Compatibility: for all i ≤ j ≤ k , one has ϕi ,j ◦ ϕj ,k = ϕi ,k

Ai Aj Ak
ϕij ϕjk

ϕik
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Inverse (projective) systems

De�nition

An inverse limit of an inverse system, is given by

Object: A

Projection morphisms: for each i a morphism µi : A 7→ Ai .

such that

Compatibility: for all i ≤ j , one has ϕi ,j ◦ µj = ϕi

Ai Aj Ak

A

ϕij ϕjk

ϕik

µi
µj

µk
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Inverse limits universal property

Theorem

Inverse limit do exists and are unique (upto isomorphism) in most

algebraic categories.

Universal property:

Ai Aj

A

Y

ϕij

µi µj

U

νi νj
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Proof of the abstract nonsense

Dealing with concrete categories (Objects are Sets).

De�nition

A cone of an inverse system is a sequence c = (ci )i∈I where xi ∈ Ai

such that

ϕi ,j(cj) = ci .

De�ning

A : the set of cones

µi (c) := ci .

constructs indeed an inverse limit !
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Inverse systems and limits in Mathcomp

Variable Obj : I -> Type.

Variable bonding : (forall i j, i <= j -> Obj j -> Obj i).

Record invsys : Type := InvSys {

invsys_inh : I;

invsys_id : forall i (Hii : i <= i), (bonding Hii) =1 id;

invsys_comp : forall i j k (Hij : i <= j) (Hjk : j <= k),

(bonding Hij) \o (bonding Hjk) =1 (bonding (le_trans Hij Hjk));

}.

(* The Mixin formalizes the universal property *)

Record mixin_of (TLim : Type) := Mixin {

invlim_proj : forall i, TLim -> Obj i;

invlim_ind : forall (T : Type) (f : forall i, T -> Obj i),

(cone Sys f) -> T -> TLim;

_ : cone Sys invlim_proj;

_ : forall T (f : forall i, T -> Obj i) (Hcone : cone Sys f),

forall i, invlim_proj i \o invlim_ind Hcone =1 f i;

_ : forall T (f : forall i, T -> Obj i) (Hcone : cone Sys f),

forall (ind : T -> TLim),

(forall i, invlim_proj i \o ind =1 f i) ->

ind =1 invlim_ind Hcone

}.
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Back to power series

Definition fps_bond := fun (i j : nat) of (i <= j)%O => @trXnt R j i.

Record fpseries := FPSeries { seriesfun : nat -> R }.

Definition fpsproj n (f : {fps R}) : {tfps R n} := [tfps i <= n => f``_i].

Lemma fpsprojP : cone fps_invsys fpsproj.

Notation "''pi_' i" := (fpsproj i).

Lemma fpsprojE x y : (forall i : nat, 'pi_i x = 'pi_i y) -> x = y.

Canonical fps_invlimType := Eval hnf in InvLimType {fps R} fps_invlimMixin.

Now algebraic structures are for free:

Canonical fps_zmodType :=

Eval hnf in ZmodType {fps R} [zmodMixin of {fps R} by <-].

Canonical fps_ringType :=

Eval hnf in RingType {fps R} [ringMixin of {fps R} by <-].

[...]
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Back to power series

One can reuse everything from truncated power series !

Example: derivative of a product:

Theorem derivM_tfps n (f g : {tfps R n}) :

(f * g)^`() = f^`()%tfps * (trXnt n.-1 g) + (trXnt n.-1 f) * g^`()%tfps.

Theorem derivM_fps (f g : {fps R}) :

(f * g)^`()%fps = f^`()%fps * g + f * g^`()%fps.

Proof.

apply invlimE => i.

rewrite !(proj_simpl, proj_deriv_fps) derivM_tfps /=.

by rewrite -!fps_bondE !ilprojE.

Qed.
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Back to Catalan numbers

Theorem

Suppose that (Ci )i∈N veri�es

C0 = 1 et Cn =
n−1∑
k=0

CkCn−1−k ,

then

Tn =
1

n + 1

(
2n

2

)

forall C : nat -> nat,

C 0 = 1 ->

(forall n : nat, C n.+1 = \sum_(i < n.+1) C i * C (n - i)) ->

forall i : nat, C i = 'C(i.*2, i) %/ i.+1
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Proofs in mathcomp

2× 3+ 1 = 7 proofs !

Truncated or in�nite power series

Definition FC : {fps Rat} := \fps (C i)%:R .X^i.

Proposition FC_algebraic_eq : FC = 1 + ''X * FC ^+ 2.

Definition FC : {tfps Rat n} := [tfps i => (C i)%:R].

Proposition FC_algebraic_eq : FC = 1 + \X * FC ^+ 2.

3 methods to extract the coe�cients:

generalized Newton binomial formula

Lagrange inversion formula

holonomic computation

+ 1 bijective proof
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Generalized Newton binomial formula

F (X ) =
1−

√
1− 4X

2X

Theorem

For any α (non necessarily integer):

(1+ X )α =
∑
n

α(α− 1) . . . (α−m + 1)

m!
X n

Theorem coef_expr1cX c a m :

((1 + c *: ''X) ^^ a)%fps``_m =

c ^+ m * \prod_(i < m) (a - i%:R) / m`!%:R :> R.
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General methods ?

Problem

Newton's only works for equation which are solvable by radicals.

More general solutions:

Lagrange inversion

Holonomic computation
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Lagrange formula

Fact: {series starting with X} is a group for ◦ (neutral X ).

Proposition (Lagrange Inversion)

F (X ) = X + . . . has a unique inverse F ∗ (Lagrange inverse):

F (F ∗(X )) = F ∗(F (X )) = X .

Writing F = X
G �xed point version F ∗(X ) = X · G (F ∗(X )) .

Its coe�cient are given by [X i+1](F ∗) =
[X i ](G i+1)

i + 1
.

For catalan: G (X ) = (1+ X )2

Proposition FC_fixpoint_eq : FC - 1 = lagrfix ((1 + ''X) ^+ 2).
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Holonomic computation

F is rational if F = N
P with N,P polynomials.

F is algebraic if there exists polynomials (P0, . . . ,Pd) s.t.

P0 + P1F + P2F
2 + . . .PdF

d = 0 .

F is holonomic if there exists polynomials (Pc ,P0, . . . ,Pd) s.t.

PC + P0F + P1F
′ + P2F

′′ + . . .PdF
(d) = 0 .

Theorem

rational → algebraic → holonomic.
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Catalan from holonomic computation

F = 1+ X · F 2

gives
(1− X 2)F + (1− X 4)XF ′ = 1 .

Proposition FC_differential_eq n : (* truncated series version *)

(1 - \X *+ 2) * (FC n.+1) + (1 - \X *+ 4) * tmulX (FC n.+1)^`() = 1.

Proposition FC_differential_eq : (* infinite series version *)

(1 - ''X *+ 2) * FC + (1 - ''X *+ 4) * ''X * FC^`() = 1.

Extracting the coe�cients gives the simplest possible recurrence:

(n + 2)Cn+1 = (4n + 2)Cn .
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Conclusion

Once we have the formalization of power series, using them is
quite simple (300 lines for the three proofs)

I strongly regret I didn't had them for Littlewood-Richardson !

Automation (eg: ring tactic) should make it even shorter;

Much shorter that the bijective proofs (500 lines);

Using truncated power series makes the proof only slightly
longer (to deal with the degree bound), but the statement
more complicated (degree bound, 2 di�erent multiplications by
X, keeping or adding one to the degree).

Work in progress on limits (need help with Canonical / Mixin /
HierarchyBuilder).

Everything I presented here could be entirely automatized
thanks to computer algebra (see e.g. combstruct Maple©).
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